391^2+120^2=c^2

Simple and best practice solution for 391^2+120^2=c^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 391^2+120^2=c^2 equation:



391^2+120^2=c^2
We move all terms to the left:
391^2+120^2-(c^2)=0
We add all the numbers together, and all the variables
-1c^2+167281=0
a = -1; b = 0; c = +167281;
Δ = b2-4ac
Δ = 02-4·(-1)·167281
Δ = 669124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{669124}=818$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-818}{2*-1}=\frac{-818}{-2} =+409 $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+818}{2*-1}=\frac{818}{-2} =-409 $

See similar equations:

| 32+23x=180 | | 286.65^2+317.52^2=c^2 | | 125^2+300^2=c^2 | | 336^2+190^2=c^2 | | 461^2+229.84^2=c^ | | (2.5^(x+1))=15.625 | | (2.5^(x+1))-5=10.625 | | (7x-17)=(7x+1) | | (8x+1)=(x+26) | | (4x+8)=(2x+10) | | (x-2)+(x-14)=180 | | 5x+11=3x+30 | | 18=-15+3x | | 3h=-7+4h | | x+15=5*x-25 | | 17x+10+10x+10=70 | | 9+-4g=11.4 | | 10w+8=-1 | | (8+14)x10=(8x10)+(14x10) | | 7x+7=10-26 | | 1000000225411265x+1111144555751307838=1 | | 11x/48+5x/40=2375 | | 100=225-u | | -u+36=172 | | 12t=-72 | | 9-3x=2x+49-3x=2x+4 | | 6+17x=-15=14x | | 6x-4-x=-11 | | 44x+x+20+3x=180 | | 2/3=v-3/6 | | 6k+1-3k=16 | | f-12=-8-3f |

Equations solver categories